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1. Introduction 

Robust identification of targets in clutter is a difficult problem.  This is particularly 
evident when classifiers trained on one set of data are tested on an unrelated set.  This 
problem is due to the relationship of data to the limited conditions under which data is 
collected, and to the statistical nature of classifiers in representing data.  To investigate 
this relationship and improve performance such classifiers need training data that is 
scenario relevant.  But obtaining new signatures from field-testing, representative of new 
scenarios or new sensor systems, is both expensive and impractical.  This paper will 
examine the potential to use synthetic data to supplement or replace measured data for the 
training of target classifiers. 

The synthetic Forward Looking Infrared (FLIR) target signatures developed for this study 
are an improvement to those we provided a number of years ago for another comparison 
of real and synthetic data [1].  That study compared the use of synthetic, or measured, 
FLIR scenery with targets, as test data for an Automatic Target Recognizer (ATR) trained 
on measured data alone.  Metrics were then determined to characterize ATR performance 
and signature differences.  Additional target detection research, using synthetic FLIR 
imagery and human observers, examined target search prediction [2], and range 
performance prediction [3].  

Our study tests an algorithm and not humans, ignores the detection phase of an ATR, and 
instead examines whether the classifier stage, trained on synthetic signatures alone and 
tested on measured signatures alone, can perform as well as when trained on measured 
signatures alone. 

Our method is to train one classifier on synthetic signatures, another on measured 
signatures, test each trained classifier on a sequestered set of measured signatures, and 
then compare the results.  Comparable performance validates the synthetic signatures for 
target identification applications and provides a tool to explore improving classifier 
performance.  This validation differs from a one-to-one comparison of temperatures 
observed at specific locations on a target, and substitutes a weaker statistical measure 
focused on application needs. 

The process of creating a useful synthetic database begins by creating signatures designed 
to approximate a real-world scenario, measuring the comparative performance of a 
classifier trained on the database, and then adjusting the database by adding new data in 
response to performance deficiencies.  This improves performance until classifier state 
representations stabilize.  A detailed description of this methodology is found in the 
section on database generation.  This is followed by a description of the application of 
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such signatures to training a classifier, and a demonstration of enhanced classifier 
performance trained on a subset of synthetic signatures, selected from a larger database. 

2. Database Generation 

2.1 Database Emulation 

For guidance in the synthesis of synthetic FLIR signatures we tried to emulate the kind of 
data available in the measured, real-world signatures of the COMANCHE FLIR database.  
This included the targets, the locations, and the environmental conditions as specified in 
the COMANCHE database ground truth. 

The COMANCHE FLIR database consists of approximately 30,000 image scenes 
(720×480 pixels) containing 22,000, approximately target centered, signature instances 
(75×40 pixels) containing roughly equal numbers of 10 target types.  Signatures were 
collected for three geographical locations, Yuma, Arizona, Hunter-Liggett, California, 
and Grayling, Michigan, two seasons including one summer and one spring or winter 
month, and a full diurnal cycle.  Although ground-truth information did not specify 
vehicle exercise states, anecdotal information suggested that states varied from stopped 
with engine off, to stationary idling, to moving at low velocity.  After extraction from the 
scenes, the 22,000-signature chips were separated into two databases designated SIG and 
ROI.  The SIG database, of targets in uncluttered environments, included all 10 target 
types viewed from 72 evenly spaced rotational aspects spanning 0 to 355 degrees, while 
the ROI database of targets near clutter, included only 5 of the 10 target types viewed 
from eight, approximately evenly spaced, rotational aspects from 0 to 315 degrees.  The 
ROI target signatures are more difficult to recognize. 

For these experiments we modeled 4 of the 10 SIG or 3 of the 5 ROI target types.  The 4 
ground targets included the HMMWV, M60, T72, and the M113.  Only the M113 was 
not part of the ROI database.  This selection provided 5,156 signatures of 4 targets from 
the SIG database and 4,249 signatures of 3 targets from the ROI database.  We chose 
these four targets because we wanted two tank, and two non-tank vehicles, one with 
tracks and one with wheels. We modeled each target in similar conditions and locations, 
and simulated realistic exercise routines to produce thermal signatures consistent with 
observed data.  Nevertheless, specific synthetic signatures were not designed to match 
specific measured FLIR signatures since the measured signatures were uncalibrated and 
specific vehicle exercise information prior to data collection was unknown. 
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2.2 Synthetic-Signature Database Generation  

Isothermal target model surface elements were calculated using the PRISM [4] 
commercial code, and IR-signatures were rendered using the U. S. Army Research 
Laboratory’s (ARL) CREATION code [5].  Figure 1 shows a schematic of the 
methodology [6] for signature database generation, classifier training and testing, and 
model adjustment.  The BRL-CAD/FRED/PRISM path (white modules) provides thermal 
prediction from thin, surface modeled, polygonal nodes.  CREATION then images the 
distribution of thermal nodes from any location in the 3-dimensional space surrounding 
the object, adding wavelength and optical blurring sensor effects, atmospheric 
propagation loss, and noise.  By comparing the performance and codevectors of 
synthetic, and measured data trained classifiers, the synthetic database was expanded by 
creating additional signatures representing missing exercise states, and model structural 
variations. 

Figure 2 shows an example of the diversity of synthetic signatures.  Four targets and four 
aspects are shown.  From left to right: HMMWV, M60, T72, and M113.  Top to bottom: 
three groups of these four targets are shown with increasing amounts of optical blur and 
line noise.  Within each group of 16 images, from top to bottom, is shown simultaneous 
views of the front, right side, back, and left side.  Gray scale normalization is applied to 
each signature separately.  Some random variation in target centering, similar to that in 
the measured database, was also modeled.  Any and all such signatures are included in 
the 90,432 synthetic FLIR database. 

 

Figure 1. This flow chart shows the iterative process for generating, 
training and testing, and validating the synthetic signature database.  
The white modules show the path for FLIR signature database 
generation.  The gray modules show two different paths for classifier 
training, and one for testing and validation.  The black paths show how 
a model can be modified after validation. 
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Figure 2. Synthetic FLIR signatures: left to right: HMMWV, M60, T72, and M113.  Top 
to bottom: three groups of these four targets are shown with increasing amounts of optical 
blur and line noise.  Within each group of 16 images, from top to bottom, is shown 
simultaneous views of the front, right side, back, and left side.  Gray scale normalization 
is applied to each view separately.  Some variation in target centering is also seen.  All 
such signatures are included in the synthetic database of 90,432 signatures. 
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Figure 3 shows a comparison of real (top) and synthetic (bottom) signatures of a T72 for 
every 5-degrees of aspect starting with a front view at the top left and rotating clockwise 
as seen from above.  Each group of signatures contains 8 rows and 9 columns.  Though 
for the signatures in Figure 3, we tried to model a specific COMANCHE signature 
sequence, in general we did not due to the lack of specific target temperature and vehicle 
exercise information.  Some clutter, but no noise was added to this sequence so as to 
focus signatures on the target. 

 

Figure 3. Visual comparison of real (top) and synthetic (bottom) signatures of a T72 tank for every 5-
degrees of aspect starting with a front view at the top left and rotating clockwise as seen from above.  Each 
group of signatures contains 8 rows and 9 columns. 
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2.3 Sequestered Test Database Generation 

The sequestered database, which was used for all testing, was created by dividing the 
ROI database in half.  Each database contained all target aspects, but not equal numbers 
of each aspect.  One half designated the ROI-TESTING database, consisted of 
2,125-signatures that were sequestered and used solely for testing.  The other half, 
designated the ROI-TRAINING database, consisted of 2,124 signatures and was used for 
synthetic data subset selection and classifier baseline performance evaluation.   

3. Experimental Procedures 

3.1 Classifier Training, Testing, And Scoring 

Figure 1 shows the procedure (gray modules) for training and testing the classifier.  Two 
potential methods for classifier training are indicated.  One method used the entire 
synthetic database and the other used a scenario dependent subset.  These options will be 
discussed in more detail in the section describing the experiments. 

The K-Means classifier, used in this research, was developed at ARL and is described as 
a minimized mean-squared-error (MSE) encoder [7].  All input target chips, both in the 
training and testing phase, were intensity scaled to zero mean and unity variance.  The 
chips are 75 by 40 pixels in size and contain between 1,000 and 2,000 pixels on target, 
depending on target size, aspect angle, and range to target. 

In the training phase a target size section was extracted from the center of the chip by a 
series of aspect dependent windows.  It was then enlarged to a fixed size, and wavelet 
decomposed into four sub-bands. Training commenced by collecting like-aspect sub-band 
images from the same target, clustering these using the K-Means algorithm, and then 
averaging the sum to create codevectors.  Codevectors were collected into a codebook 
representing the various signatures of a given target at a given pose.  This process was 
repeated for all of the training chips representing each target thus creating a library of 
target and aspect specific codebooks.   

For the experiments described below, we grouped all horizontally viewed aspects into 4 
aspect dependent windows at 0, 90, 180, and 270 degrees respectively.  For 4 targets this 
yields 64 codebooks (4 targets x 4 aspect windows x 4 wavelet sub-bands), with each 
codebook containing tens of codevectors representing the trained classifier states. 

In the testing phase, an unknown target chip was similarly extracted, sized, and wavelet 
decomposed, and then compared with each of the codevectors of each of the codebooks 
for each of the learned targets.  The target and aspect dependent, sub-band codevector 
with the lowest Mean-Square-Error (MSE) was declared the identity.  
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In scoring the algorithmic declarations, three measures were available: correct target 
identification, correct target aspect identification, and confidence. The confidence, given 
by a numerical value on the 0 to 1 interval, was the difference of the normalized inverse 
MSE values for the two highest value identities: the larger the difference the higher the 
confidence.  This value could thus be used to threshold acceptable identifications 
depending on the application of the results.  For the classification experiments described 
in this paper, correct identification alone was used to score declarations, and no threshold 
applied. 

3.2 Scenario Relevant Classifiers 

Classifiers are developed for many types of applications.  Some require robust 
performance against a broad range of scenarios. Others, at the opposite end of the 
application spectrum, require near optimal performance against a narrowly defined 
scenario.  Since classifier applications are often known in advance it is reasonable to use 
the knowledge of an expected scenario to help improve performance.  In this section we 
describe a method that uses a classifier to select scenario relevant signatures from a large 
database, and then uses the selected signatures to train a scenario relevant classifier.  The 
method is not intended to be optimal but rather simply as a proof of principle. 

The methodology is shown schematically in Figure 1.  The gray module, labeled 
SCENARIO SIGNATURE SELECTOR, is a filter, or series of filters, each consisting of 
a classifier trained on a scenario-labeled database of measured-data.  Signatures correctly 
identified by this scenario-specific classifier were scored for database inclusion using a 
set of three criteria, one of which was determined by experimentation.  The three criteria 
required that the targets be correctly identified with respect to target-ID, target-aspect, 
and that the confidence for correct ID should be 0.9 (on the 0 to 1 interval) or greater.  
The confidence threshold was determined by experimentation.  Using these three scoring 
criteria is more restrictive than that used for scoring classifier performance described 
earlier.  Experiment 5, described below, is an example of how this is done and shows that 
subset selection can significantly improve classifier performance. 

3.3 Description Of Experiments 

3.3.1 Introduction 

In order to evaluate the usefulness of our synthetic signature database for target 
identification, we undertook a series of experiments that compared the performance of 
the K-Means classifier trained on databases containing mixtures of measured and 
synthetic signatures.  In each experiment, the classifier performance was measured using 
the sequestered ROI-TESTING database. 

Six separate database combinations were used to train the classifier.  The first four 
include: 1) the entire SIG signature database alone, 2) the SIG database augmented with 
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increasing amounts of synthetic signatures, 3) the entire synthetic signature database 
alone, and 4) the entire synthetic database augmented with increasing amounts of SIG 
signatures.  The fifth database combined two subsets of synthetic signatures that were 
selected to be similar to the signatures in the SIG and ROI-TRAINING databases 
respectively.  The sixth database combined the entire SIG and the entire ROI-TRAINING 
databases, and was used to establish a baseline for classifier performance against the 
sequestered, ROI-TESTING, test set.  

3.3.2 Experiment 1 

The purpose of the first experiment was to demonstrate the performance of the classifier 
when trained on measured signatures taken from a different, but similar, data collection 
to that of the test data. 

In this experiment, shown schematically in Figure 4, the K-Means classifier was trained 
on SIG signatures alone.  Choosing a random set of 1.25% of the 5,156-SIG-signature 
database (requiring only that equal percentages of each of the four target types be 
represented) the classifier was trained, and then tested on the sequestered test database.  
This process was repeated seven times, using different percentages, creating seven 
individual training databases having 1.25, 2.5, 5, 10, 25, 50, and 100% of the signatures 
in the SIG database respectively.  For each iteration additional signatures were selected 
randomly from the diminishing pool of SIG signatures and then added to the existing 
training database.  Thus each successive, larger, database always included all of the 
signatures previously chosen plus an approximately equal number of new signatures.  
With each new, incrementally larger database the classifier was retrained from scratch 
using a list of signatures ordered by the sequence in which the increments were added.  
This ordering, which was the same for each training epoch, tended to bias initial 
codevector choices toward signatures that appeared earlier in the training process.  
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Figure 4. Experiment 1: Training and testing of the SIG signature database.  Full size 
databases are designated by curved modules, derived, subset databases by rectangular 
modules, and signature processing is designated by six sided modules.  Classifier 
performance is designated by diamond shaped modules. 

3.3.3 Experiment 2 

This experiment demonstrated how the performance of the classifier changed as the 
measured signature training set was combined with increasing amounts of synthetic 
signatures.  For this experiment, shown schematically in Figure 5, the classifier was 
trained on all 5,156-SIG signatures combined with increasing amounts of synthetic 
signatures and then tested as in the first experiment.  This process yielded seven new 
training databases, each containing all of the 5,156-SIG-signatures, plus 1.25, 2.5, 5, 10, 
25, 50 and 100% of the 90,432-synthetic-signatures respectively.  When fully combined 
the initial 5,156-signature database had increased in size to 95,588-signatures. 

3.3.4 Experiment 3 

This experiment demonstrated the performance of the classifier when trained on synthetic 
signatures alone. In this experiment, shown schematically in Figures 6, six databases of 
increasing size (2.5, 5, 10, 25, 50 and 100% of the 90,432-synthetic-signatures) were 
created containing synthetic signatures alone.  A classifier was then trained on each of 
these databases and then tested as in the previous experiments.  

3.3.5 Experiment 4 

The purpose of this experiment was to demonstrate how the performance of the classifier 
changed as the synthetic signature training set was combined with increasing amounts of 
measured signatures. For this experiment, shown in Figure 7, the entire 90,432-synthetic 
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database was combined with increasing numbers of SIG signatures and then tested as in 
the previous experiments.  This experiment is similar to that of the second experiment 
except that the roles of the SIG and synthetic databases are reversed.  Again seven 
databases are created in successively increasing size starting at 90,432-signatures and 
ending with 95,588-signatures total. 

 

Figure 5. Experiment 2: Training and testing of the 5,156 SIG signature database 
augmented with synthetic signatures. 

 

Figure 6. Experiment 3: Training and testing of the 90,432 synthetic signature database. 
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Figure 7. Experiment 4: Training and testing of the 90,432 synthetic signature database 
augmented with increasing amounts of signatures from the 5,156 SIG signature database. 

 

3.3.6 Experiment 5 
This experiment demonstrated that the performance of a classifier can be improved by 
training it on a subset of signatures selected from a large database, keeping signatures 
that are similar to those in the test set, and discarding signatures that are dissimilar.  For 
this experiment, shown in Figure 8, two mutually exclusive subsets are selected from the 
90,432-database of synthetic signatures, added together, and then used to train and test 
the classifier.  The databases included: a SIG-LIKE database of 8,450-synthetic 
signatures and a ROI-LIKE database of 7,257-signatures. 

The SIG-LIKE database was produced by training a classifier on the 5,156-signature SIG 
database and then using the trained classifier to identify similar signatures from the 
synthetic signature database.  Correctly identified signatures were then selected for 
inclusion in the SIG-LIKE database if they met the three criteria mentioned earlier 
(correct identification, correct aspect, and confidence greater than or equal to 0.9).  
Similarly, the ROI-LIKE database was produced, as above, by first training a classifier on 
the 2,124-signature ROI-TRAINING database.  Signatures common to both databases 
were arbitrarily removed from the SIG-LIKE database but retained in the ROI-LIKE 
database. We named the combined, 15,707 synthetic signature, database the 
ROI-LIKE_SIG-LIKE database. 

3.3.7 Experiment 6 
This experiment provided a baseline for classifier performance against which, the 
performance of other classifiers could be compared.  For this experiment, shown in 
Figure 9, the SIG and ROI-TRAINING databases are combined to train the classifier.  
The performance of this classifier established a baseline since the ROI-TESTING 
database was the other, mutually exclusive, half of the original ROI database. 
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Figure 8. Experiment 5:  Training and testing of selected SIG-like and ROI-like 
signatures.  The combined training database included approximately 8,500 SIG-like and 
7,250 ROI-like synthetic signatures. 

 

Figure 9. Experiment 6:  Training and testing of classifier 
trained on the combined SIG and ROI-TRAINING 
databases.  The performance of this classifier benchmarks 
all previous experiments. 
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4. Results 

4.1 Introduction 

The two sections that follow describe the results from the six experiments described in 
the previous section.  All trained classifiers were tested on the sequestered, 3-target 
ROI-TESTING dataset alone. Classifier performance is specified as the probability (in 
percent) for correct identification.  For overall performance against all targets a single 
number is specified; for performance against individual targets the Confusion Matrix 
tabular form is used.  The Confusion Matrix table lists the Predicted ID down the left 
column and Actual ID along the top row.  Correct identification probabilities are shown 
along the diagonal.  Off diagonal elements represent the probability of misidentification.  
If a target is part of a training set but not part of the testing set no probability value can be 
assigned under that targets column.  Such entries are indicated by dashes.  For example: 
for performance in which Target 4 of the training set was not part of the test set, no 
performance value can be listed in the Target 4 column of the Confusion Matrix since 
Target 4 can not be the correct identification.  Target 4 could, however, be incorrectly 
declared as one of the other three targets by placing a value in one of the first three spaces 
in row 4. 

For the four-target datasets we investigated, targets 1 and 4, and targets 2 and 3 were of 
similar size, whereas targets 1 and 4 were smaller than targets 2 and 3.  Target 1 was a 
HMMWV, Target 2 was an M60, Target 3 was a T72, and Target 4 was an M113.  Target 
4 was not part of the ROI-TESTING test set. 

All training was accomplished using a K-Means classifier.  The K-Means parameters 
were chosen to provide enough codevectors to produce good target identification 
performance. 

4.2 Results From Experiments Using Randomly Chosen Datasets 

Experiments 1 through 4 examined the effect on performance by the random selection of 
training data.  Figure 10 shows four curves that summarize these experiments.  The 
performance is specified as the probability for correct target identification (PD), as a 
function of the percentage of the total number of training signatures used.  A PD of 1.0 
corresponds to all targets being identified correctly. 

In Figure 10 the curve designated by circles shows the performance of the SIG trained 
classifier as a function of the percentage of the 5,156-signatures used.  PD saturation is 
not observed since the PD never levels off.  This indicates that the SIG database contains 
mostly unique signatures with little redundancy.  The maximum PD achieved was 82%. 
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Figure 10. Performance comparison of K-Means classifier tested on 2,125 
ROI sequestered signatures, as a function of the normalized number of 
training signatures used.  From the bottom up, four curves represent 
results from individual and combined training databases: synthetic 
signatures alone, SIG alone, synthetic augmented with SIG, and SIG 
augmented with synthetic.   

The curve designated by squares shows the performance of the synthetic data trained 
classifier as a function of the percentage of the 90,432-signatures used.  For this case, PD 
saturation is observed: rolling over for a training set of approximately 9,000 signatures, 
and flattening out above 45,000 signatures.  Two possibilities may have contributed to 
the PD saturation: either the number of codevectors, created in the training process, was 
not increasing, or the additional codevectors were not sufficiently different to improve 
performance.  Figure 11 shows the increase in the number of codevectors as the number 
of files per target was increased.  Clearly no saturation is observed in the number of 
codevectors being created.  This suggests that the added codevectors were insufficiently 
different, and that a significant portion of the synthetic data is similar.  The maximum PD 
achieved was 70%.  This level of performance was 12% less than that produced by 
training the classifier on the SIG database alone. 
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Figure 11. This figure shows the number of codevectors as a function 
of the number of synthetic signatures used for training.  The database 
included 22,608 target chips for each of four targets or 90,432 target 
chips in all. 

The curve designated by diamonds shows the improvement in PD as increasing 
percentages of the 90,432-signature synthetic database are added to the 5,156-signature 
SIG database.  The combined performance was shown to increase 3% to a PD of 85% 
over using SIG signatures alone.  This 3% increase is significant since the statistical 
uncertainty in recognizing files from the 2,245-signature ROI database is about 2%.  The 
1% difference in performance, for the leftmost point of the diamonds-curve compared to 
the rightmost point of the circles curve (both for classifiers trained on the entire SIG 
dataset), is believed to be due to differences in the ordering of signatures in the training 
lists, and the bias, mentioned earlier, of codevector choice toward signatures that appear 
early in the training cycle.  Though both training lists contained all of the SIG signatures 
the rightmost data point of the circles-curve used a scrambled SIG list derived by 
combining seven increments of randomly chosen signatures from the original SIG list, 
whereas the leftmost data point of the diamonds-curve used the original SIG list. 
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The curve designated by stars shows the improvement in PD as increasing amounts of the 
5,156-signature SIG database is added to the 90,432-signature synthetic database.  The 
performance is shown to improve to about a PD of 83%, an increase of 13% over the 
performance observed using the synthetic data alone, and a 1% increase over the 
performance observed using the SIG data alone. Note that the rightmost point of the 
diamonds-curve and the rightmost point of the stars-curve represent performance of 
classifiers trained on the same database (the sum of all the SIG and all the synthetic data), 
and yet there is a 2% difference in performance.  As previously noted, we believe this 
difference in performance, is due to a difference in the ordering of the signatures in the 
two training lists.  One list starts with the original, complete, list of all of the SIG data 
and then adds six increments of randomly selected synthetic signatures until all of the 
synthetic data is added, while the other list starts with the original, complete, list of all of 
the synthetic data and then adds six increments of randomly selected SIG signatures until 
all of the SIG data is added. 

Comparing the curve represented by the star symbol (for classifier performance using all 
of the synthetic data plus increasing amounts of measured SIG signatures), with the curve 
represented by the circle symbol (for measured SIG signatures alone), we observe a 
statistically significant, but marginal, 3%, improvement in performance when more than 
500 measured signatures are available, but when less than 250 measured signatures are 
available the improvement increases significantly.  This shows that using a substantial, 
but randomly organized, synthetic FLIR database significant levels of classifier 
performance can be achieved even if little measured data is available. 

4.3 Results From Experiments Using Datasets Selected By Special Purpose 
Classifiers 

Experiment 5 examined classifier performance as trained by a scenario relevant classifier.  
Table 1, presented in Confusion Matrix form, summarizes the results of this experiment.  
Tables 2 through 4 are shown for comparison.  The lighter, diagonal elements with bold 
numerals show the correct identifications.  
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Table 1. A confusion matrix showing the probability for correct ROI-TESTING target identification for a 
classifier trained on a database of the union of the ROI-LIKE and SIG-LIKE synthetic subsets.  Overall 
probability for correct identification is 81%. 

Probability of Correct Target Identification (%) 
Predicted/Actual Target 1 Target 2 Target 3 Target 4 

Target 1 90 9 14 - 
Target 2 5 76 9 - 
Target 3 4 14 76 - 
Target 4 1 1 1 - 

Table 2. A confusion matrix showing the probability for correct ROI-TESTING target identification for a 
classifier trained on a database of SIG images.  Overall probability for correct identification is 82%. 

Probability of Correct Target Identification (%) 
Predicted/Actual Target 1 Target 2 Target 3 Target 4 

Target 1 85 4 6 - 
Target 2 4 81 8 - 
Target 3 2 12 81 - 
Target 4 9 3 5 - 

Table 3. A confusion matrix showing the probability for correct ROI-TESTING target identification for a 
classifier trained on the union of SIG, SIG-LIKE and ROI-LIKE synthetic datasets.  Overall probability for 
correct identification is 85%. 

Probability of Correct Target Identification (%) 
Predicted/Actual Target 1 Target 2 Target 3 Target 4 

Target 1 85 2 4 - 
Target 2 4 85 10 - 
Target 3 2 8 80 - 
Target 4 9 5 6 - 

Table 4. A confusion matrix showing the probability for correct ROI-TESTING target identification for a 
classifier trained on a database of the union of SIG and ROI-TRAINING datasets.  Overall probability for 
correct identification is 88%. 

Probability of Correct Target Identification (%) 
Predicted/Actual Target 1 Target 2 Target 3 Target 4 

Target 1 97 2 2 - 
Target 2 2 85 15 - 
Target 3 2 13 81 - 
Target 4 0 0 1 - 
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Table 1 shows the confusion matrix for the classifier trained on the union of the 
ROI-LIKE and SIG-LIKE synthetic datasets.  This dataset was selected by a scenario 
relevant classifier.   The overall PD was 81% indicating that the performance of this 
classifier is comparable to that of the SIG trained classifier as shown by the circles-curve 
in Figure 10.  This result is in contrast with that obtained when the selection of 
synthetic-data was done incrementally and randomly.  As shown by the squares-curve in 
Figure 10, incremental and random selection of synthetic training data produced a PD 
that never exceeded 70%, almost 11% less than that obtained by specially selecting the 
training data.  This suggests that the incremental and random selection of training data is 
unlikely to produce optimal classifier performance, and that using advanced information 
about targets, locations and conditions can improve performance. 

For comparison, Table 2 shows the confusion-matrix for the classifier trained on SIG data 
alone.  The overall PD is 82%.  Misidentifications of Target 2 as Target 3 and vice versa 
are due to the fact that both targets are tanks.  Table 2 details the classifiers performance 
against the individual targets summarized by the rightmost point of the circles-curve in 
Figure 10. 

Table 3 shows the confusion matrix for the classifier trained on the union of the SIG, 
SIG-LIKE and ROI-LIKE synthetic datasets.  The overall probability for correct 
identification was 85%, an increase of over 3% from the single database results for either 
classifier in Tables 1 and 2.  This demonstrates that classifier performance can be 
improved when synthetic and measured databases are joined, albeit marginally.  Again 
misidentifications mix Target 2 with Target 3. 

For comparison, Table 4 benchmarks the performance of the classier.  It shows the 
confusion matrix for the classifier trained on the union of the measured SIG, and 
ROI-TRAINING datasets.  Again the test set was the ROI-TESTING subset.  The overall 
PD was 88%.  We will use this performance level as a benchmark since it alone uses data 
taken from the same database from which the test set was chosen. 

Using the results of Table 4 as the benchmark, the relative overall performance for 
classifiers represented in Tables 1, 2, and 3 are 93.5, 92.4, and 96.8 percent respectively. 

5. Conclusions 

We have shown that augmenting measured FLIR target signature data with synthetic data 
can produce performance that exceeds that of using either database alone.  We have 
shown that synthetic sets can be competitive with real data sets, and so can be used when 
measured data sets cannot be obtained due to expense or unavailability of targets, 
sensors, or site access. We have shown that within a large, diverse, database of synthetic 
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FLIR signatures there exist subsets whose trained classifier performance can exceed that 
achieved using the whole database.  We have shown that these subsets can be selected 
using scenario relevant classifiers, and that a classifier, trained with this data can perform 
as well as a classifier trained on measured images alone.   

We have obtained these results with relatively low-resolution images, derived from 
extremely low-resolution target models.  We have taken care to simulate physically 
reasonable target states commensurate with measured data scenarios and we have 
validated our data by comparing synthetic to measured data performance in the training 
and testing of target classifiers.  
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